Tag Archives: Thomson

Electrons, Bonds, and Lewis Structures

What Are Bonds?

As mentioned, atoms are connected to each other by bonds. That is, bonds are the “glue” that hold atoms together. But what is this mysterious glue and how does it work? In order to answer this question, we must focus our attention on electrons.

The existence of the electron was first proposed in 1874 by George Johnstone Stoney (National University of Ireland), who attempted to explain electrochemistry by suggesting the existence of a particle bearing a unit of charge. Stoney coined the term electron to describe this particle. In 1897, J. J. Thomson (Cambridge University) demonstrated evidence supporting the existence of Stoney’s mysterious electron and is credited with discovering the electron.

In 1916,  Gilbert Lewis (University of California, Berkeley) defined a covalent bond  as the result of two atoms sharing a pair of electrons . As a simple example, consider the formation of a bond between two hydrogen atoms:

Ekran Resmi 2014-04-22 15.42.19

Each hydrogen atom has one electron. When these electrons are shared to form a bond, there is a decrease in energy, indicated by the negative value of DH .

The energy diagram in Figure 1.2 plots the total energy of the two hydrogen atoms as a function of the distance between them. Focus on the right side of the diagram, which represents the hydrogen atoms separated by a large distance. Moving toward the left on the diagram, the hydrogen atoms approach each other, and there are several forces that must be taken into account: (1) the force of repulsion between the two negatively charged electrons, (2) the force of repulsion between the two positively charged nuclei, and (3) the forces of attraction between the positively charged nuclei and the negatively charged electrons. As the hydrogen atoms get closer to each other, all of these forces get stronger. Under these circumstances, the electrons are capable of moving in such a way so as to minimize the repulsive forces between them while maximizing their attractive forces with the nuclei. This provides for a net force of attraction, which lowers the energy of the system. As the hydrogen atoms move still closer together, the energy continues to be lowered until the nuclei achieve a separation (internuclear distance) of 0.74 angstroms (Å). At that point, the force of repulsion between the nuclei begins to overwhelm the forces of attraction, causing the energy of the system to increase. The lowest point on the curve represents the lowest energy (most stable) state. This state determines both the bond length (0.74 Å) and the bond strength (436 kJ/mol).

Ekran Resmi 2014-04-22 15.45.34